Rock glaciers vegetation colonization in Retezat Mountains: implications for morphodynamics and palaeoclimate reconstruction

  • Razvan Popescu University of Bucharest https://orcid.org/0000-0002-6339-927X
  • Alfred Vespremeanu-Stroe University of Bucharest
  • Olimpiu Pop Babeș-Bolyai University, Faculty of Geography, Cluj-Napoca
  • Nicolae Cruceru Emil Racoviță Speleology Institute, Bucharest
Keywords: rock glacier, Pinus mugo, climate change, dendrochronology

Abstract

Vegetation is an important ecological indicator of rock glaciers' activity as its development marks the transition from active to inactive and relict states. Most rock glaciers in Retezat Massif are covered by vegetation, mostly Pinus mugo shrubs but also herbaceous and forestry vegetation. In this paper, 82 rock glaciers from Retezat are classified into six classes according to vegetation characteristics, rock glaciers' vegetation changes are assessed using old aerial and ground imagery, and the timing of shrubs vegetation growth is investigated by means of dendrochronology methods applied on three rock glaciers. The study's main purpose is to identify what caused the vegetation colonization, climate variation, or rock glacier inactivation. Results indicate that altitude is the dominant factor of rock glacier vegetation cover variability. In most cases, the vegetation patches increased in density and only slightly in surfaces. The last rock glaciers' vegetation colonization initiated in the 18th century, beginning with 1830s on all the three rock glaciers probably after the last local Little Ice Age cold spell. We conclude that the investigated rock glaciers were pseudorelict during the entire Holocene and that recent vegetation settling is not the first one in the Holocene. However, the scenario of rock glaciers inactivation that caused vegetation growth, previously advanced in the literature, cannot be excluded, especially in light of the recent discoveries of rock glaciers activity, and further investigations should be done to come to a less ambiguous outcome.

References

Ardelean AC, Onaca AL, Urdea P, Șerban RD, Sîrbu F. 2015. A first estimate of permafrost distribution from BTS measurements in the Romanian Carpathians (Retezat Mountains). Géomorphologie: relief, processus, environnement 21(4): 297–312. DOI: 10.4000/geomorphologie.11131

Bálint M, Ujvárosi L, Theissinger K, Lehrian S, Mészáros N, Pauls SU. 2011. The Carpathians as a major diversity hotspot in Europe. In Biodiversity hotspots (pp. 189–205). Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-20992-5_11

Berza T, Dimitrescu R, Dimitrescu M, Tatu M, Strusievicz OR, Pop G, Szasz L, Popescu G, 1989. Harta Geologică 1:50.000, 105 D Retezat, L-34-94-D, Institutul de Geologie și Geofizică.

Burga CA, Frauenfelder R, Ruffet J, Hoelzle M, Kääb A. 2004. Vegetation on Alpine rock glacier surfaces: a contribution to abundance and dynamics on extreme plant habitats. Flora–Morphology, Distribution, Functional Ecology of Plants 199(6): 505–515. DOI: 10.1078/0367-2530-00179

Cannone N, Gerdol R. 2003. Vegetation as an ecological indicator of surface instability in rock glaciers. Arctic, Antarctic, and Alpine Research 35(3): 384–390. DOI: 10.1657/1523-0430(2003)035[0384:VAAEIO]2.0.CO;2

Cannone N, Piccinelli S. 2021. Changes of rock glacier vegetation in 25 years of climate warming in the Italian Alps. Catena, 206, 105562. DOI: 10.1016/j.catena.2021.105562

Dai L, Palombo C, Van Gils H, Rossiter DG, Tognetti R, Luo G. 2017. Pinus mugo krummholz dynamics during concomitant change in pastoralism and climate in the Central Apennines. Mountain Research and Development 37(1): 75-86. DOI: 10.1659/MRD-JOURNAL-D-14-00104.1

de Martonne E. 1907. Recherches sur l'évolution morphologique des Alpes de Transylvanie (Karpates méridionales) (Vol. 1). Revue de Géographie Annuelle, Paris I (1906–1907).

Fleischer F, Haas F, Piermattei L, Pfeiffer M, Heckmann T, Altmann M, Rom J, Stark M, Wimmer M, Pfeifer N, Becht M. 2021. Multi–decadal (1953–2017) rock glacier kinematics analysed by high–resolution topographic data in the upper Kaunertal, Austria. The Cryosphere 15(12): 5345–5369. DOI: 10.5194/tc-15-5345-2021

Franklin RS. 2013. Growth response of the alpine shrub, Linanthus pungens, to snowpack and temperature at a rock glacier site in the eastern Sierra Nevada of California, USA. Quaternary international 310: 20-33. DOI: 10.1016/j.quaint.2012.07.018

Frauenfelder R, Kääb A. 2000. Towards a palaeoclimatic model of rock–glacier formation in the Swiss Alps. Annals of Glaciology 31: 281–286. DOI: 10.3189/172756400781820264

Gärtner-Roer I, Heinrich I, Gärtner H. 2013. Wood anatomical analysis of Swiss willow (Salix helvetica) shrubs growing on creeping mountain permafrost. Dendrochronologia 31(2): 97-104. DOI: 10.1016/j.dendro.2012.09.003

Haeberli W. 1985. Creep of mountain permafrost: internal structure and flow of alpine rock glaciers. Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie an der Eidgenossischen Technischen Hochschule Zurich, 77.

Holmes RL. 1983. Computer–assisted quality control in tree–ring dating and measurement. Tree–Ring Bull. 43: 69–75.

Ikeda A, Matsuoka N. 2002. Degradation of talus‐derived rock glaciers in the Upper Engadin, Swiss Alps. Permafrost and Periglacial Processes 13(2): 145–161. DOI: 10.1002/ppp.413

Jones DB, Harrison S, Anderson K, Whalley WB. 2019. Rock glaciers and mountain hydrology: A review. Earth–Science Reviews 193: 66–90. DOI: 10.1016/j.earscirev.2019.04.001

Kääb A, Strozzi T, Bolch T, Caduff R, Trefall H, Stoffel M, Kokarev A. 2021. Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s. The Cryosphere 15: 927–949. DOI: 10.5194/tc-15-927-2021

Kellerer‐Pirklbauer A, Pauritsch M, Winkler G. 2015. Widespread occurrence of ephemeral funnel hoarfrost and related air ventilation in coarse‐grained sediments of a relict rock glacier in the Seckauer Tauern range, Austria. Geografiska Annaler: Series A, Physical Geography 97(3): 453-471. DOI: 10.1111/geoa.12087

Kiss I, Alexa V. 2015. Ecological restoration activities for long–term preservation of the alpine and sub–alpine habitats in the Retezat National Park. TÁJÖKOLÓGIAI LAPOK, 13(1): 33–43.

Mărgărint MC. 2010. Utilizarea teledetecţiei în studiul geografic al teritoriului judeţului Iaşi. Editura Universităţii "Alexandru Ioan Cuza”, Iași. 301 p.

Micu DM, Dumitrescu A, Cheval S, Bîrsan MV. 2016. Climate of the Romanian Carpathians. Springer, Cham. DOI: 10.1007/978-3-319-02886-6

Mîndrescu M, Evans IS. 2014. Cirque form and development in Romania: Allometry and the buzzsaw hypothesis. Geomorphology 208: 117–136. DOI: 10.1016/j.geomorph.2013.11.019

Munteanu A, Comănescu L, Nedelea A. 2012. Altitudinal Zonation of the Morphodynamic Processes in the Piatra Craiului Mountains (The Carpathians, Romania). Case Study: Cheii de sub Grind and Şpirlea Valleys. Revista de Geomorfologie 14: 95–102

Müllerová J. 2005. Use of digital aerial photography for sub–alpine vegetation mapping: A case study from the Krkonoše Mts., Czech Republic. Plant Ecology 175(2): 259–272. DOI: 10.1007/s11258-005-0063-3

Necșoiu M, Onaca A, Wigginton S, Urdea P. 2016. Rock glacier dynamics in Southern Carpathian Mountains from high–resolution optical and multi–temporal SAR satellite imagery. Remote sensing of environment 177: 21–36. DOI: 10.1016/j.rse.2016.02.025

Nedelea A, Munteanu A, Oprea R, Comănescu L, Dobre R. 2011. Cryo–nival modeling system. Case study: Făgăraș and Piatra Craiului Mountains. Revista de Geomorfologie 13: 83–90

Onaca AL. 2017. Procese şi forme periglaciare din Carpaţii Meridionali: abordare geomorfologică şi geofizică. Editura Universităţii de Vest, Timișoara. 265 p.

Onaca A, Ardelean AC, Urdea P, Ardelean F, Sîrbu F. 2015. Detection of mountain permafrost by combining conventional geophysical methods and thermal monitoring in the Retezat Mountains, Romania. Cold Regions Science and Technology 119: 111–123. DOI: 10.1016/j.coldregions.2015.08.001

Onaca A, Ardelean F, Urdea P, Magori B. 2017. Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors. Geomorphology 293: 391–404. DOI: 10.1016/j.geomorph.2016.03.032

Pearl JK, Keck JR, Tintor W, Siekacz L, Herrick HM, Meko MD, Pearson CL. 2020. New frontiers in tree-ring research. The Holocene 30(6): 923-941. DOI: 10.1177/0959683620902230

Palombo C, Lasen C, Scire M, Garfì V, Lombardi F, Tognetti R, Marchetti M. 2010. Structural and dendrochronological characterization of mountain pine persistent woodlands on the Monti del Sole: Dolomiti Bellunesi National Park. L’Italia Forestale e Montana 65(6): 737–749.

Popa I, Kern Z. 2009. Long–term summer temperature reconstruction inferred from tree–ring records from the Eastern Carpathians. Climate dynamics 32(7–8): 1107–1117. DOI: 10.1007/s00382-008-0439-x

Popescu R. 2018. Permafrost investigations in Iezer Mountains, Southern Carpathians. Revista de Geomorfologie 20(1): 102–122. DOI: 10.21094/rg.2018.033

Popescu R, Onaca A, Urdea P, Vespremeanu–Stroe A. 2017. Spatial distribution and main characteristics of alpine permafrost from Southern Carpathians, Romania. In Landform dynamics and evolution in Romania (pp. 117–146). Springer, Cham. DOI: 10.1007/978-3-319-32589-7_6

Puşcaş M, Ronikier M, Mráz P, Hurdu BI. 2021. Biogeography of the Carpathians: towards a better understanding of biodiversity patterns. Plant Systematics and Evolution, 307(2): 1–3. DOI: 10.1007/s00606-021-01754-3

RINNTECH 2021. Technology for wood and tree analysis. http://www.rinntech.de/index–28703.html. Accessed 11 December 2021

Roșca S, Șimonca V, Bilașco Ș, Vescan I, Fodorean I, Petrea D. 2019. The assessment of favourability and spatio–temporal dynamics of Pinus mugo in the Romanian Carpathians using GIS technology and landsat images. Sustainability, 11(13): 3678. DOI: 10.3390/su11133678

Ruszkiczay–Rüdiger Z, Kern Z, Urdea P, Braucher R, Madarász B, Schimmelpfennig I, ASTER Team. 2016. Revised deglaciation history of the Pietrele–Stânişoara glacial complex, Retezat Mts, southern Carpathians, Romania. Quaternary International 415: 216–229. DOI: 10.1016/j.quaint.2015.10.085

Ruszkiczay-Rüdiger Z., Kern Z, Urdea P, Madarász B, Braucher R, ASTER Team. 2021. Limited glacial erosion during the last glaciation in mid-latitude cirques (Retezat Mts, Southern Carpathians, Romania). Geomorphology, 384, 107719. DOI: 10.1016/j.geomorph.2021.107719

Săndulache C, Săndulache I, Grecu F, Dobre R, Irimescu A. 2015. Geomorphological processes within the alpine level of Parâng Mountains. Revista de Geomorfologie 17: 29–44

Săvulescu I. 2014. Forest vegetation in Iezer Mountains. Editura Etnologică, București. 275 p. (in Romanian)

Scotti R, Brardinoni F, Alberti S, Frattini P, Crosta GB. 2013. A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps. Geomorphology 186: 136–149. DOI: 10.1016/j.geomorph.2012.12.028

Serrano E, San José JJ, Agudo C. 2006. Rock glacier dynamics in a marginal periglacial high mountain environment: Flow, movement (1991–2000) and structure of the Argualas rock glacier, the Pyrenees. Geomorphology 74(1–4): 285–296. DOI: 10.1016/j.geomorph.2005.08.014

Șerban RD, Onaca A, Șerban M, Urdea P. 2019. Block stream characteristics in Southern Carpathians (Romania). Catena 178: 20-31. DOI: 10.1016/j.catena.2019.03.003

Šibík J, Šibíková I, Kliment J. 2010. The subalpine Pinus mugo-communities of the Carpathians with a European perspective. Phytocoenologia 40(2-3): 155-188. DOI: 10.1127/0340-269X/2010/0040-0436

Stoffel M, Bollschweiler M. 2008. Tree–ring analysis in natural hazards research–an overview. Nat. Hazards Earth Syst. Sci. 8: 187–202. DOI: 10.5194/nhess-8-187-2008

Stoffel M, Corona C. 2014. Dendroecologic dating of geomorphic disturbance in trees. Tree–Ring Research 70(1): 3–20. DOI: 10.3959/1536-1098-70.1.3

Tampucci D, Boffa G, Mangili F, Gobbi M, Caccianiga M. 2015. Vegetation outlines of two active rock glaciers with contrasting lithology. Fitosociologia 52(1): 9–18. DOI: 10.7338/pls2015521/02

Timiș V, Popa I. 2011. Spatial variability of dendrochronological series from Rodna Mountains (Eastern Carpathians–Romania). Proceedings of the Romanian Academy Series B: Chemistry, Life Science and Geoscience 1: 83-86.

Urdea P. 1998. Consideraţii dendrogeomorfologice preliminare asupra unor forme periglaciare din Munţii Retezat. Anal. Univ. Craiova, Geografie vol I: 23–28

Urdea P. 2000. Munţii Retezat: studiu geomorfologic. Editura Academiei Române, București. 272 p.

Vasile M, Vespremeanu–Stroe A, Popescu R. 2014. Air versus ground temperature data in the evaluation of frost weathering and ground freezing. Examples from the Romanian Carpathians. Revista de geomorfologie 16: 61–70

Vasile M, Vespremeanu–Stroe A. 2017. Thermal weathering of granite spheroidal boulders in a dry‐temperate climate, Northern Dobrogea, Romania. Earth Surface Processes and Landforms 42(2): 259–271. DOI: 10.1002/esp.3984

Vespremeanu–Stroe A, Urdea P, Popescu R, Vasile M. 2012. Rock glacier activity in the Retezat mountains, Southern Carpathians, Romania. Permafrost and Periglacial Processes 23(2): 127–137. DOI: 10.1002/ppp.1736

Vincze I, Orbán I, Birks HH, Pál I, Finsinger W, Hubay K, Marinova E, Jakab G, Braun M, Biró T, Tóth M, Dănău C, Ferencz I, Magyari E. 2017. Holocene treeline and timberline changes in the South Carpathians (Romania): Climatic and anthropogenic drivers on the southern slopes of the Retezat Mountains. The Holocene 27(11): 1613–1630. DOI: 10.1177/0959683617702227.

Published
2021-12-31
How to Cite
Popescu, R., Vespremeanu-Stroe, A., Pop, O., & Cruceru, N. (2021). Rock glaciers vegetation colonization in Retezat Mountains: implications for morphodynamics and palaeoclimate reconstruction. Revista De Geomorfologie, 23(1), 73-89. https://doi.org/10.21094/rg.2021.142
Section
Articles